If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-4r-4=0
a = 1; b = -4; c = -4;
Δ = b2-4ac
Δ = -42-4·1·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{2}}{2*1}=\frac{4-4\sqrt{2}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{2}}{2*1}=\frac{4+4\sqrt{2}}{2} $
| u/5+4.4=-8.1 | | .51x=6.3 | | 3(x-4)=5(x-6)+32 | | -q=11 | | -6.36=y/6+9 | | x+(.07x)=604.84 | | 2.2=5.4-2y | | .5/10=x/5 | | -6x-22=-9x+6 | | 5a+18+254-a+8a-30=180 | | f(6)=7 | | 2/15=x/17.4 | | f6=7 | | 4x+6-2x=2(2x+3) | | 8+b/−4=5 | | 2/15=17.4/x | | 6x-0.6=x | | 12+6x-3x=9x+6 | | H(t)=-16^2+1,296 | | 10x+5x+7-8=12x+3+2× | | -9.6(x-4.5)=38.4 | | 30n=+25 | | 27-3/2x=x | | (3x-2)(x+8)(2x+3)=180 | | (7x-15)=(3x+5)=180 | | p/9=30 | | 16x-(8x-9)=49 | | 27/10h+9/10=38/10 | | 9x14=6x+52 | | n÷3=7 | | 2.5=1.66/y | | 10x-20=7x+12 |